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(2.4), (2.6). we conclude that t, U is a solution of the problem (1.13). (1.14) (2.1). 
Let us note the following: 

1) The proof of the convergence of the proposed method of solving the Cauchy 
problem is carried over to the case of the characteristic problem as well as the mixed 
problem for the system (1.7) without essential change since it has been carried out by 
the method of characteristics. 

2) The method considered for the solution of the incomplete plasticity equations 
can be applied to arbitrary hyperbolic quasi-linear systems with two independent varia- 

bles admitting of separation in the above-mentioned sense. 

3) The approximate method presented for solving the incomplete plasticity equa- 
tions corresponding to the faces of the Tresca prism for the axisymmetric case reduces 

essentially to solving a number of plane problems of ideal plasticity theory (plane strain), 

whose numerical solution methods are quite well developed ; the difference from the 
plane problem will consist only in the presence of an inhomogeneity in the equations 

under consideration (see (1.10). (1.11)). 

In conclusion, the author is grateful to E, I. Shemiakin for supervising the research and 
for valuable remarks. 
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The stability of deformation of an elastic viscoplastic hardening material under 
high precritical strains is investigated in a three-dimensional formulation. A so- 
lution of the stability equations is obtained in a rectangular coordinate system 
for a developed fundamental plastic flow process with small elastic strains inthe 

case of a homogeneous precritical state. The surface and internal instability 

phenomena are investigated. 
The papers [l. 21 are devoted to an investigation of the stability of deforma- 

tion of an elastic-plastic material with large precritical strains. The stability 
of deformation of bodies of viscoplastic and elastic-viscoplastic material under 
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small precritical strains has been considered in a three-dimensional formula- 

tion in p - 71. 

1. Let us describe the motion of a deformable medium by the equations [8] 

za = 5”(Xi, t), xi = X’ (X”, t) (I. I) 

The symbol ~a denotes a fixed coordinate system relative to which the motion of the 

medium occurs ; Xiis a moving system of convective coordinates with the metric ten- 

sor gij. 

Let us isolate three positions of the accompanying coordinates : initial corresponding 
to the absence of stresses, fully deformed, and new initial position with residual plastic 
strains in which internal stresses are absent. Let g’ij, g^ ij and g*ij denote the metric 

tensors, respectively. The space corresponding to the metric tensor gij*, is generally 
non-Euclidean. Let us henceforth limit ourselves to the case of a homogeneous stress- 

strain precritical state in the body, which will permit remaining within the framework 
of Euclidean space. 

We consider an elastic viscoplastic body, whose mechanical model is presented in [6]. 
The relationships between the stress and strain in this body can be written thus. 

The body remains elastic while 

~^;a^; < k2 (0), sji _- gji _ l/sanngt U.2) 

If SISSY{ > k2 (x), x = (s*f - ce*‘$ e*‘i, eji = eji _ 1/3E,flgji, then 
,. 

&ij = Eije + Ebb (1.3) 

The elastic strains are hence related to the stresses by Hooke’s law 
L. 

a ;= ?LP:gf + 2/.&y (1.4) 
The plastic strain rates are 

E*“; = 0, (a*; _ ce*Pf) <s*j - beak!;) < k2 (x) 0.5) 

g*“; = zc, (s*f _ ce*P; _ $*Pji), (s*; _ ce*p; _ $*pj) (s’?; - ce*pj _ qE*pj)=k2 (x) 

For the components with mixed structure of the indices, (1.3) can be represented as 

“i E j-e 
,. ei j + e*p; _ &*T?*“; (I.61 

In this case, the equality 
t-;= E’“f + g*Pj _ 2gyp; CL? 

is valid. Here t-i, E^“f, g*“f are mixed velocity components of the full, elastic and 
plastic strains, respectively, in the bases g^ij, g*pj. On the basis of Hooke’s law the elas- 
tic strain rates satisfy the equation 

Here 23 is the Jaumann derivative of the stress tensor in the concomitant coordinate 
system [9]. Superposing a small additional motion determined by the displacement vec- 
tor ~v’(X*, t) (y is a small parameter) on the main motion described by the relation- 
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ships (1.1) - (1.8). let us write the linearized equations. We have, to the accuracy of 
linear terms, in the plastic domain 

0 
‘^i j = he’^“,“gf + 2~E’7, x’*‘:: = ht*^f;g; _+ aPE’ -ej 

E ‘^i 
.-& 

’ A ei j + g*p; _ 2Ef*P7E-e; _ &*P$ -c;, 

EPA; 1 pj + g’*P; _ &*Pjne-e;, _ 2E*Pg-e;, 

g*P; = .$ @‘*; _ &*Pf _ &*P;) + q)’ (s’f _ ce*P; - $*P;) 

@*f _ ce*P; _ $*P;) (,/*I _ &*Pj _ &*P;) = 

k1 [(s’*P, - ce’*‘G) e*“,” + 

(C-b 
_ ce*“;) e’*Pm 

n 17 k = k (%I) g (x_ 

For the metric tensor, strain tensor, and strain rate tensor 

(1.9) 

gij’ = viwj’ + v,wi;, g’ij _- _ (viwrJ + vJ&), q,’ = llqgij’ (1.10) 

For the velocity and acceleration vectors (the dot denotes the total time derivative) 

Vi’ = Wi” $ L?,viWfny Vi” = Wi”’ + Vn’y7$71n (1.11) 

The equilibrium equations and boundary conditions for the stress tensor increments are 

r101 
vn51” - S,,“‘~ivy,~W”L + 5i”~m~7,~Wfm + p’/i + pfi’ = PW;’ + (1. l2) 

p~,,‘v~w”’ f $Lj’, clmn:n + 6i’i’n,n’ = pir 

Here p and fi are the density and the mass force components, n’ is the increment of 
the normal unit vector, pi’ is the increment in the surface load. 

Let us limit ourselves to the case of developed plastic flow when the elastic strains 
can be neglected as small relative to the large plastic strain. This permits identifica- 
tion of the metric tensors gAij and g*ij and all the quantities with corresponding indi- 

ces. We henceforth omit the indices. Then, eliminating the quantities e ‘“j, ge;, g’“f 

and I$‘, we obtain 

rj’ = sjf _ ce”; _ qEpj, hji = sji - 2cep:, )_,” =____L 
3h + ztl 
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Here 2’; is the Jaumann derivative of the stress tensor increments. The remaining quan- 
tities are defined by (1.10). 

Let us investigate the behavior of the perturbations in a short time interval in the 

neighborhood of the linearization point r. We consider the coefficients of the linearized 

equations of state independent of time and defined at the instant t = Z, we shall mea- 
sure the time t for the perturbations from the instant Z. We shall consider the process 
of deformation stable ifthe perturbations damp out with time. This approach, understand- 

ably, does not afford the possibility of tracing the behavior of the perturbations for large 
values of time. An analogous plate and rod stability criterion under creep conditions 

was proposed in PI]. 

It has been shown in [12] that the effects of relaxation of the internal residual stresses. 
caused by the presence of an internal viscosity mechanism, can assure the possibility of 

plastic strain when the increment of the stress vector Aa either lies inside or outside the 

domain bounded by the loading surface of the preceding state. This permits the conclu- 
sion that there will be no unloading phenomenon for the medium model considered un- 

der small perturbations. 

2. Let us seek the solution of (1.10) - (1.13) as 

Wj’ (Xi, t) = Wj (Xi) esf , G’“j (Xi, t) = t,k (Xi) f? 

(s is a complex quantity here). 

(2.1) 

Substituting (2.1) into (1.13) and selecting the concomitant coordinate system so that 
it agrees with the fixed Cartesian coordinate system Z~ at the time of linearization, we 
obtain in the case of a triaxial precritical state of stress and strain 

Here 

t.i = d..a. 
3 I, InI 

bmnw 
n, n + (1 - 6ij) cij (Wi, j + w.i, i) 

1 
(k, 1 = 1, 2,* 3) 

(2.2) 

(2.3) 

dij E IS + (2p + C + Sq) $ - 2 (1 + Tj$) E”i - 2c$EPil 6ij + 

h* (1 + q49(2p: - s) + 2c$ (h*e”f + f .$) - +- (2~ + c) 9 + 

-$- {rj (2E’j - s) - 2h;*r,“~“Jl+ k,* [h,j (1 - 2~~:) - 

2pePj + 2h*eP,“hnn]} @=I, 2, 3) 

Let US consider the slow steady deformation of three-dimensional solids. We shall not 
take account of the inertial force in the original state. Substituting (2.2) into (1.12), 
we obtain a system of equations in terms of displacements 
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Lijw; = 0 (i, j = 1, 2, 3) (2.4) 

(1 - 8:) Cmi8,j 5 - p (2 - 2sE”f) 8; 
m 

The general solution of the system (2.4) can be represented as a linear combination of 

three solutions 
,!j) = 1 

8 de’ II L,’ II ,Dcij 

a uj? 
(2.5) 

The functions Q(j) are determined from the differential equation 

det jl L,l jl O(j) = 0 (2.6) 

We note that here results analogous to [13] can be obtained. Let us limit ourselves to 
the construction of a solution in the case of plain strain. Equation (2.6) becomes 

[ AG+B& 1 
where 

t c&oDf&- (,FdJ-2+p”K]~=0 

A = c12alkb”l, B = a,kbk2al,b~‘l - a,J@ (~1% - 61~ j- 02’) - 

azkb”” (c$~ + aI1 - 02’) + (a~’ - 02”) @~a - CZI + 01’ - 6~~) 

C = czla,kbk2 D = s [(s - 25”;) cl2 -i (s - 2Epi) aIkW] 

F z s [(s - 2;“;) azkb”2 + (s - 2E3 4, K = s” (s - at*:) (s - 23) 
(k, n = 1, “, 3) 

A periodic solution along the Ox, -axis can be represented as 

4, = C$2km”‘sin (Tlzl), 71=?, n=l, 2,..., 00 
m=l, 2, 3, 4 

(2.V 

k, = t_ -& [(&I2 -t pF) & {(B2 - 4AC) ~1~ + p (BF - 4DC)7,” + 
( 

p2 ( F2 - 4C K)}‘/z)‘.~ 

The boundary conditions for xi = 0, x1 = 1 ox’1 = 0 and w2’ = 0 are satisfied 

automatically, which corresponds approximately to hinged support conditions. For a thin- 
walled plate these conditions go over exactly into the hinged support conditions. 

It should be noted that in the cast: cf a “dead” loading, the boundary value problem 

(1.12). (2.4) is self-adjoint and the buckling can occur according to the type of static 

instability 1143. 

3. Let us consider the stability of deformation under the plane strain conditions for 
a rectangular strip of an incompressible, elastic viscoplastic material under compression 
along the 0X1-axis of the “dead” load. We consider the strip infinitely long in the 
positive direction of the OX2 -axis with the load-free boundary X2 = 0. 

Assuming the concomitant coordinate system Xi agrees with the Cartesian coordinate 
system P at the instant t = r , we have from (1.1) 

l- 
’ - r(t) 

r xi, x2=_ ) r (f) X2 x3=x3 
r 

) r(O)=1 

where r = r(t) is the degree of compression in the direction of the OX’-axis. The 
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components of the precritical state are determined at the running instant z for k (x) = 
const , by the following relationship : 

VI = -p’ (3.1) 

8”; = g = Gji = 0, i#=i 
According to (1.12), the boundary conditions on the free surface zs = 0 become 

6’; = 0, a’; = 0 (3.2) 

Distinct types of instability follow from the solution (2. ‘7) taking account of (2.5), 
depending on the values of the roots km. If all the values of the roots ~&are real, then 

a solution is possible which damps out with depth from the free surface a? = 0, i. e. 
the surface instability phenomenon holds [ 151. If all the values of the roots are imagi.- 

nary, then a solution is possible which is periodic along the ox2 -axis, i.e. the internal 
instability phenomenon holds [16]. In the case of complex roots, the perturbations in 

the displa~ments will damp out with depth according to the internal instability type- 
Evidently different types of instability can be observed simultaneously for diverse com- 
binations of the roots. Substituting the solution (2.7) into the boundary conditions (3.2) 
and hence taking account of (2.2), (2.3), (2.5), (3. l), we obtain the characteristic equa- 
tions as a function of the kind of roots as a result of ordinary calculations. 

Results of solving the characteristic equations on the “BESM-4” electronic digital 
computer showed that only surface instabilities can originate in metals. The dependence 
of the magnitude of the critical degree of compression r* on the hardening coefficient 

0.1 < c0 < 1 is shown in Fig. 1 for values of 
the yield point - 0.015 < k, < - 0.003, the 
coefficient of viscosity 0 f no < 0.25, and the 
strain rate r’ = - 0.0001;- 0.001 (C” = c J Et* 

4, = k i P, qo = q f ~1. 

Fig. 1 

Analysis showed that the influence of the yield 

point k. and the coefficient of viscosity TJ,, with- 

in the above-mentioned limits on the magnitude 
of the critical strain is negligible. However, the 
numerical values of the critical loads hence ob- 
tained are unreal, therefore, the surface instability 
is not observed in practice. The surface instabi- 
lity phenomenon does not originate for slightly 
hardening materials (co < 0.1) with the same 
values of k,, qQ, r . 
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INFLUENCE OF A RIGID INCLUSION ON THE STRESS INTENSITY 
NEAR THE TIPS OF A CRACK 

PMM Vol. 38, Ng4, 1974, pp. 719-727 
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(Tbilisi) 
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The stress intensity factor in a plate containing a rigid circular inclusion is 
determined by reduction to an integral equation with a Cauchy kernel and fin- 
ding its numerical solution. 

1. An elastic medium occupies the whole (z = x + iy )-plane with a circularhole 


